Day2

  • Graphic Era Deemed to Be University, India
  • Title:A Systematic Review of Agricultural Policies in Terms of Drivers, Enablers, and Bottlenecks: Comparison of Three Indian States and a Model Bio-energy Village Located in Different Agro Climatic Regions
  • Time :

Abstract
Agricultural policies play a crucial part in any economy, Sustainable agriculture policy ensure food safety and socio-economic development but also vary considerably across the various regions of the world, A comparative policy analysis helps to determine various positive and negative factors which can help and promote the implementation of sustainable agriculture policies for future. This article compares three Indian states and one German bio village in terms of their policy. This study uses a systematic literature review of 72 published Journal articles indexed in reputed databases to first identify the key drivers, enablers, and bottlenecks and subsequently, in terms of these, compares agricultural policies of the three best performing states in India (Punjab, Gujarat, Sikkim) and bio-village Juhnde (Germany). NVivo software is used for the content analysis to check the word frequency and relevancy of the research done, ranking of these states, and bio-village extends key takeaway for crafting effective and efficient agricultural policies that can be replicated in other regions. Indian states of Punjab and Gujarat are still lagging in terms of sustainable agricultural policies, exploitation of natural resources is the main concern in both the two states, issues such as low groundwater table and excessive use of chemical fertilizers are still the main bottlenecks for Punjab and Gujarat province. Secondly, the Indian north-eastern state Sikkim has shown the world how the best policies can promote socioeconomic development in any region, the state government of Sikkim has worked as an enabler for the agriculture sector. Germany’s first bio village has paved the way to the other German villages, Juhnde village has set an example for other villages and provinces to install bioenergy plants.

Biography

Dr. Sushant Tomar holds Masters in Business admininsration degree in Marketing and Retail, currently a research scholar pursuing Ph.D. in Organic farming policies in context to value chain development from Graphic Era (Deemed to be University) Dehradun, India. He is having more than 5 years of corporate experince in different verticals of sales and marketing, his core area of speicalisation is business development and project consultancy, currently he is working on the project with NABARD for upliftment of the rural organic farmers.

  • National Taiwan Ocean University, Taiwan.
  • Title:Variability of Spatiotemporal Distribution Pattern in Response with Environmental Factors of Greater Amberjack Seriola dumerili in the Taiwan Strait
  • Time :

Abstract
Environmental characteristics in the Taiwan Strait (TS) have been linked to variations in the abundance and distributions of Greater amberjack (Seriola dumerili) populations. Greater amberjack is a commercially and ecologically significant species in ecosystems, and their spatial distribution patterns are a pivotal role in fisheries management and conservation. The purpose of this research was focused on modeling the spatiotemporal distribution pattern of S. dumerili in association with environmental factors, as well as its effects in the TS, which are still understudied. Therefore, the relationship between the catch rates and the influence of environmental changes on fish communities must be thoroughly investigated. To investigate the catch rates of S. dumerili with changes in oceanographic conditions within the TS, we applied generalized additive models (GAMs) to spatiotemporal fishery data from logbooks and voyage data recorders from Taiwanese fishing vessels (2014–2017), and we developed a species distribution model based on the best selected GAMs. The deviance explained (DE) indicated that high catch rates revealed that sea surface temperature (SST) was the most important factor influencing S. dumerili distributions, whereas mixed layer depth (MLD) was the least relevant factor. The model predicted that the S. dumerili would have a relatively high abundance of catch rates in the northwestern region of TS during summer, which would have extended to the coastal seas of mainland China, and that, despite having a comparatively higher catch rate would be widely distributed again in the winter. The targeted species were strongly influenced by biophysical environmental conditions, and the potential fishing areas have occurred along the waters of TS. The findings of this study were informative in determining how the S. dumerili responded to spatiotemporal environmental variables and predicting species distributions. Habitat preferences and distribution pattern of S. dumerili is the primary information that contributes to better knowledge and understanding of the environmental conditions of TS, which plays an important role and inform future priorities for conservation planning and management aspects.

  • University of Sao Paulo, Brazil
  • Title:Hybrid Catalyst Configuration to Deep Oxidize Small Alcohols: How to Efficiently Break the C-C Bonds at Low Temperatures
  • Time :

Abstract
Recently researchers have focused to enhance the electrocatalytic activity of the biosystems, increasing the energy generation and electronic conductivity into the biofilms. Enzymes immobilized onto the surface of electrodes in biological fuel cells has been extensively reported. A biofuel cell provides a means to obtain clean, renewable energy and have great potential to be used as alternative energy source for low power devices. Some important development to obtain the maximum energy from the fuels are the focus of this presentation. To enhance the power density of enzymatic biofuel cell (EBFC) it is necessary to deep oxidize the fuels, that is to say that all the electrons from the fuel must be removed. There are two main routes to obtain this (i) immobilization of a group of target enzymes to perform a cascade in order to maximize the fuel oxidation; (ii) development of hybrid biofilms employing a mixture of organic catalyst or noble metals nanoparticles with an enzyme able to break C-C bonds. We will present recent configuration to complete oxidize ethanol (ET) and ethylene glycol (EG) into CO2.

Biography

Adalgisa Rodrigues de Andrade has a degree in Chemistry and PhD in Physical Chemistry from University of São Paulo. She is a Full Professor at the University of São Paulo in the Department of Chemistry FFCLRP-USP Dr. de Andrade researches in different areas of electrochemistry, mainly in Environmental Electrochemistry, preparing electrode materials to carry out the degradation of various toxic compounds. Her recent research is in the field of energy production with fuel cells and biofuel cells. She is the author of more than 100 publications and two patents, nine book chapters and has given several lectures. She has supervised and advises many undergraduate, masters and Ph.D. students, and supervise post-doctoral students.

  • National Taiwan Ocean University , Taiwan
  • Title:Co-existence and Co-prosperity between Offshore Wind Farms and Fishermen
  • Time :

Abstract
In order to reduce carbon emissions and achieve a nuclear-free homeland, the Taiwan government revised the “Guidelines on Energy Development” in 2017 for its energy transition. By 2025, renewable energy is expected to reach 20%, with offshore wind power of 4.2 GW, an estimated power generation capacity of 14 billion kWh, and an annual carbon reduction of 7.1 million tons. However, among the 36 planned offshore wind farms in Taiwan, 21 are off the coast of Changhua. This is an important fishing ground for the coastal fishery industry and a production base for aquaculture in shallow marine water. Offshore wind farms are bound to affect the livelihood of fishermen. Therefore, through the co-existence and co-prosperity between wind farms and fishery, the conflicts in sea area utilization can be solved by marine spatial planning (MSP) and integrated coastal zone management (ICZM).
It is worth the time to think about how to use the idle sea areas between offshore wind turbines. Sea areas in wind farms may be efficiently used if marine ranches and cage culture can be planned based on the concept of integrated multi-trophic aquaculture (IMTA). Therefore, on the premise of investments in cage culture, this study evaluated the marine environment, biological resources, hardware settings, legal norms, and economic feasibility of the predetermined area of Phase 1 wind power plant off the coast of Changhua, Taiwan. According to the results, round cages could help reduce the impacts of ocean currents and tides, and 16 cages placed in sea areas among four wind turbines could achieve economic scale and remarkable fishery benefits without affecting the safety of wind turbines. If fishes with high economic values are cultured in cages and species from various trophic levels, such as seaweed and shellfish, are produced, then this can reduce impacts on the overall environment and help increase the values of fishery resources, so that the sea areas for offshore wind power can be sustainably operated.
Taiwan’s coastal fishery industry is declining day by day. While wind farms are in conflict with the industry, it can be a turning point for fishermen. It is better to teach someone to fish than to give him a fish. Measures, such as proper compensation mechanisms, a friendly adjustment on fishery management, and sound fishing village development, can aid in the co-existence and co-prosperity between wind farms and fishery after energy transition.

Biography
Dr Cheng Ting Huang PhD, Department of Aquaculture , National Taiwan Ocean University, R.O.C.
Experience: Supervisor, Taiwan Fishery Economic Development Association. Secretary-general, Taiwan Fishery Sustainability Development Association. Director, Taiwan Association for Marine Environmental and Education (TAMEE).
Present Position: Associate Professor, Department of Aquaculture, National Taiwan Ocean University. Chairman, Aquatic Animal Center, Department of Aquaculture, National Taiwan Ocean University.
Field of Specialization: Economics of Aquaculture, Management of Aquaculture.
Since 2016, he has carried out more than 30 research projects, including cage aquaculture fishery, symbiosis of fishing and electricity, aquaculture economic and management, artificial intelligence techniques to implement a practical smart aquaculture management system, and published 20 research articles on aquaculture economics and management in international journals

  • V. G. Vaze College Autonomous, India
  • Title:An Eco-friendly Innovative Halide and Metal-free Basic Ionic Liquid Catalyzed Synthesis of Tetrahydrobenzo [b] Pyran Derivatives in Aqueous Media: A Sustainable Protocol
  • Time :

Abstract
A novel imidazolium-based highly efficient, recoverable, and reusable basic ionic liquid [PEMIM][OH] was synthesized and employed as a catalyst for the multicomponent synthesis of tetrahydrobenzo [b] pyran derivatives by the condensation of dimedone, malononitrile and various substituted aldehydes in aqueous media. Novelty, the efficacy of the catalyst, high yields of desired products, greener approach and use of aqueous media make this protocol worthwhile. The isolation of pure, high yielded desired product by sidestepping the column and recrystallization technique was also demonstrated in this protocol. The novel catalyst and synthesized compounds were characterized by using various analytical techniques such as FTIR, 1H NMR, 13C NMR, DEPT-135, LC-Mass, Elemental, HSQC, HPLC, TG-DSC, TG-DTG and single crystal XRD analysis.

Biography
Dr. Paresh Suryakant More He is Associate Professor in Chemistry at The K.E.T’S, V.G.Vaze College Autonomous, His Research area Solid State in Chemistry, Material Sciences, Composite Materials , Metal Organic Framework and its application, Ferrites and its application in photo degradation, Water splitting reaction to generate H2 gas, Batteries and supercapacitors

  • Ryerson University ,Canada
  • Title:Application of Bioremediation in Geotechnical and Geo-environmental Engineering
  • Time :

Abstract
Bioremediation has been applying in both geotechnical and geo-environmental engineering since few decades ago. While bioremediation has been using to prevent erosion and slope stabilization in geotechnical engineering, bioremediation process has been successfully using in remediation of contaminated lands. Bioremediation is using living things to eliminate or reduce environmental contamination such as contaminated soils or groundwater. Some microorganisms are able to change these chemicals into harmless stage. These microorganisms that live in soil and groundwater naturally consume certain chemicals that are harmful to people and the environment. Plants such as vegetations can also be used to clean up soil, water, or air; this process is called phytoremediation. As the large numbers of organic contaminants can be degraded by micro-organism and most biological treatments attempt to optimize conditions for degradation by the naturally occurring indigenous microbial population. Biological degradation processes can be either in situ or ex situ and aerobic or anaerobic (Wood 1991). Most methods of bioremediation involve supply of oxygen, foods and nutrients required by the micro-organism. This lecture present two selected bioremediation methods which were invented to use in geotechnical engineering and geo-environmental engineering. The one developed to use in geotechnical engineering is Soil Nail and Root System in which a long root grass is used to stabilize surficial slip of soil mass in conjunction with nail system which was used for stabilizing deep slip. In this process, grass roots provide reinforcement strength to the soil mass within the shallow zone in addition to the additional strength provided from suction activity of root system. This has long been used in Ontario, Canada to stabilize steep slopes along the rivers. Second one is in trial stage in which petrochemical contaminated soil was remediated using the micro-organism which eat diesel naturally. These specific micro-organisms which could consume more petroleum hydrocarbons were bred in the contaminated soil to eliminate the contamination in the soil. Their travelling speed and distances were enhanced by applying electrokinetic flow which carry them to further distance Hassan et.al (2016). In addition, foods and nutrients required by them were transported with the help of electrokinetic flow.
Biography
Dr. Myint Win BO is a President / Chief Executive Officer in Bo & Associates Inc. Canada. He graduated with B.Sc (Geology) from the University of Rangoon and received Postgraduate Diploma in Hydrogeology from University College London, UK and MSc Degree from University of London, UK. He obtained his Ph.D in Civil Engineering (specialized in geotechnics) from the Nanyang Technological University, Singapore and obtained Certificate of Executive Management and Leadership from Massachusetts Institute of Technology, USA. He is a Fellow of the Geological Society, London, UK and a Fellow of Institution of Civil Engineer, UK. He is also a professional engineer, professional geoscientist, International Professional Engineer (UK), Chartered Geologist, Chartered Scientist, Chartered Engineer, Chartered Environmentalist, Chartered Manager, European Geologist and European Engineer. He has been serving many professional societies in both national and international levels. He has been working in four continents around the world such as North America, Europe, The Far East and Pacific. He is an experience practicing engineer, geologist, environmentalist, scientist and entrepreneur as well as an educator and he has given more than 40 special/Keynote lectures and workshops in the international conferences, tertiary institutions and professional associations. He is also an Adjunct Professor in York University and Ryerson University, Canada as well as Adjunct Professor in Swinburne University of Technology in Australia. He has published Four Textbooks, Five book chapters, 200 over technical papers in International Journals and conferences. He is an Editor for five International Journals including Environmental Geotechnics Journal and Geotechnical Research journal published by Institution of Engineers, UK. His works were cited by more than 4500 times in the referred journals and proceedings. He is a winner of more than $ one million research grants and winner of many awards for personal achievements as well as designing many award winning projects around the world.

  • Lappeenranta, Finland
  • Title:Use of Real Options to Enhance Eater-energy Nexus in Mine Tailings Management
  • Time :

Abstract
Mine tailings are waste obtained after processing mineral ore to acquire element(s) of interest. They are a mixture of ground rocks with process effluents. The largest water sink at most mines is the tailing storage facility and inappropriate management of water content in mine tailings can become a threat to its stability, and consequently, its environmental safety. Also, for reasons pertaining to water scarcity, water reuse and recycling is a plausible option to mining companies. Proper handling of mine tailings and water supply management can considerably improve the water-energy nexus. In this article, we evaluate the water-energy nexus in copper mining companies using a water reduction model focused on mine tailing facilities and water supply to the mine site to find the trade-offs between water and energy. To find out about the economic outcomes of the options covered by the analysis, project valuation techniques with a real options approach are used. This approach deploys Monte Carlo simulation to perform sensitivity and uncertainty analysis to evaluate every cost component of each water management strategy. Results show that where seawater is supplied to the mine site, improving the reuse of water by using dewatering technologies will improve the water-energy nexus. Even though the costs of these technologies are elevated in comparison to traditional disposal method because they are energy-intensive, the reduction of water requirements in the mine will reduce the cost of its treatment and transport which accounts for a large proportion of the total cost.
Biography
Dr. Natalia Araya has a PhD in Mineral Processing Engineering from Universidad de Antofagasta, Chile and she is a doctoral student in Industrial Engineering and Management program at LUT University in Lappeenranta, Finland under a double degree agreement between both Universities. Her topic is on mine tailings water management for a sustainable mining industry. Her research interests are mine tailings management and valorization, water management in mining, sustainable development in mining, circular economy in mining.

  • Institute for Environmental Research São Paulo, Brazil.
  • Title:Native Species are at Risk by the Metal Deposition in the Brazilian Atlantic Rain Forest.
  • Time :

Abstract
Trace metals adsorbed to particulate matter are supposed to be increasingly incorporated into the remnants of the Atlantic Forest next to urban, industrial, agricultural and mining sources of air pollution, especially in the Southeastern Brazil. They can be retained on tree canopies through dry and wet deposition and incorporated directly into the soil by deposition or indirectly by litterfall and decomposition. Some native tree species are better suited than others to offer a realistic overview of metal accumulation in a forest ecosystem due to their higher accumulating capacity within or on their leaf tissues. To assess the capacity of trees in different successional stages to accumulate metals, we conducted a passive biomonitoring with pioneer (P) and non-pioneer (NP) species, soil and litter in two fragments of rain forest located in São Paulo – Brazil (PP-peri-urban) and (PEFI-urban). We sampled leaves of trees, soil and litter in both sites, during the winter of 2015, and analyzed the concentrations of metals by ICP-OES. In general, NP species have higher leaf concentrations of most of the elements and higher mobility ratios for Cr, Fe, Mn, Ni, Pb and Zn were higher in NP plants than in P species in both sites. Mn concentrations were stocked in litter and could be associated to the low bioavailability of this element caused by the effect of the metals to the decomposing organisms. These results allowed us to conclude that NP species were more susceptible to the metal contamination, since the concentrations of the elements studied were higher than in P species. Even though PP site is located far from the urban emissions, the deposition of metals also impacts the site.

Biography
Dr. Ricardo Keiichi Nakazato is graduated in Biological Sciences from Universidade São Judas (2008), Ph.D. in Plant Biodiversity and Environment from São Paulo Institute of Botany (2014), post-doctorate fellow in Plant Biodiversity from Instituto de Botânica (2016), post-doctorate fellow in progress, by the Instituto de Pesquisas Ambientais (2021), specialization in Sustainability and Environment by the Fundação Getúlio Vargas (tbd). He is dedicated to researching the impact of heavy metals and other atmospheric pollutants on native species of the Atlantic Forest by biomonitoring.

  • Wageningen University, Netherland
  • Title:Sustainability for Drinking Water Reservoirs: Central Softening and Floating Solar panels
  • Time :

Abstract
Drinking water utilities in the Netherlands aim to reduce the CO2 footprint in order to become CO2 neutral in the coming years. A preferred route to achieve this is by reducing the CO2 footprint in the primary drinking water production processes. This can be done by using more sustainable chemicals, recycling residual/waste streams and by modifying the production process, for example by applying central softening.
We recently published a paper in which we demonstrate that central softening in drinking water production leads to a net reduction of the carbon footprint. The full life cycle assessment shows that the detrimental contributions to the carbon footprint, due to the use of chemicals and energy for central softening, are outweighed by the beneficial contributions at the household level, where reduced scaling leads to prolonged lifespan of appliances, reduced energy consumption and reduced use of cleaning agents. We estimate that the net total carbon footprint of drinking water softening in the Netherlands is around -0.11 Mtons CO2 equivalent per year.
Nevertheless, CO2 neutrality cannot be achieved by only focusing on reduced emissions in the primary production processes. Part of the CO2 footprint reduction needs to come from compensation, one way to achieve this is by employing floating solar panels. However, little is known on the effects of floating solar at large scale on water quality and ecology. We therefore designed a floating solar pilot and installed this on one of the water reservoirs (depth <4m) at Evides Water Company, a company based in the south of the Netherlands. Evides relies mostly on surface water for the production of drinking water, and river water is stored in large reservoirs. Several quality parameters have been monitored over multiple years, which include: 1) physico-chemical (oxygen, temperature, organic carbon, heavy metals, etc.), 2) microbiological (fecal bacteria) and 3) (hydro)biological (birds, water plants, plankton. Biography
Dr. Albert van der Wal currently leads the R&D team for drinking water production at Evides Water Company and is professor at Wageningen University (NL), specialized in sustainable (drinking) water production with focus on membrane filtration, capacitive deionization (CapDI) for water softening and desalination, removal of organic micropolltants and sand and biological activated carbon filtration. He obtained a PhD in Physical Chemistry and Microbiology.

  • University of Girona, Spain
  • Title:Feasibility of Vertical Ecosystem for Sustainable Water Treatment and Reuse in Touristic Resorts
  • Time :

Abstract
Water scarcity is one of the biggest threats of the climate change, specially in mediterranian region. The higher the temperatures the lower the rainfall and the effects of water scarcity are already a problem. More over, the biggest economic sector in mediterranean region is toursim and has a high water footprint, between 3 and 5 times higher than local hauses.
Circular economy practices apllied in hotels could help in facing the water scarcity. It consists in treating the water in the same hotel for their reutilization (decentralized systems). There are several option to apply circular economy of water in hotels. One of them is vertECO a nature based solution that has been demonstrated technically and economically feasible to aply in hotels.
The treated water meets with all the europaean legislation for treated water reuse and the pay back period for a hotel of 440 rooms is 5 years if the water price is 3 € per cubic meter. If we consider also co benefits the pay back period is even lower.

Biography
Dr. Miquel Estelrich Born in Mallorca and aware of all environmental problems He decided to study environmental science in Girona. During my degree He had the pleasure of being part of LEQUIA a research group focused on water treatment. One finished his degree He decided to improve his aknowledge about the science of water. During his master thesis in ICRA He got in contact with Alchemia Nova Gmb H a company from Austria focused on nature based solutions to solve environmental problems. His key role in Alchemia was to study more in detail the performance of vertECO technology and investigate about their costs and benefits. At the same time that he worked in Alchemia he also worked at Green Building Management as a sustainability consulter facused on a building sector. On April 2021 he left behind these two jobs to join Cushman and Wakefield, a Real State advisory company. My role in Cushman and Wakefils is to help our clients, some of the biggest real state owners in the world, in applying sustainability in their assets.

  • Kyushu University, Japan
  • Title:Water Management for Improvement of Rice Yield, Appearance Quality and Palatability with High Temperature During Ripening Period
  • Time :

Abstract
Rice (Oryza sativa L.) is one of the world’s most important food crops and is a staple food in Japan. In recent years, decreased yield and deterioration of appearance quality and palatability due to abnormally high temperatures during the ripening period have become serious problems for rice farmers in Japan. To clarify the optimal water management in large-scale fields under high temperatures at the ripening period, effective water management during this period for improvement of yield, appearance quality and palatability were investigated. Compared with intermittent irrigation and flooded irrigation, the soil temperature with saturated irrigation remained low throughout the day, and the decrease rate of the bleeding rate of hills was the lowest. These results suggested that the saturated irrigation maintained root activity. For the three irrigation types, the number of spikelets per m2 and 1000-grain weight were similar, however, saturated irrigation resulted in significantly higher rice yield due to improvement in the percentage of ripened grains. The saturated irrigation produced a high percentage of perfect rice grains and thicker brown rice grain, furthermore, the palatability of cooked rice was excellent because protein content and hardness/adhesion ratio were both low. Thus, under high-temperature ripening conditions, soil temperature was lowered and root activity was maintained when applying saturated irrigation after heading time. The results indicated that saturated irrigation is an effective countermeasure against high-temperature ripening damage.
Biography
Dr. Matsue Yuji Graduated from Tottori University graduate school master’s course in 1978, Ph.D. in Agriculture, Tottori University, March, 1993. Business Careers: General director of the Fukuoka Agriculture Research Center, Kyushu University (Professor) and Global Innovation Center, Kyushu University, The president of Japanese Society for Rice Quality and Palatability. Specialized field: Rice Agronomy and Breeding, Palatability and physicochemical properties of rice, Genetic analysis on palatability and physicochemical properties of rice. Publications: Rice palatability science from the viewpoint of crop production. Yokendo, Tokyo, Matsue Yuji ed. 2018. Appearance quality and palatability of rice -Latest research and improvement techniques-. Yokendo, Tokyo. Awards: Tianjin International Science and Technology Cooperation Award, 2010, Japan Prize of Agricultural Science, 2012.

  • University of Missouri-Kansas City, United States
  • Title:Heat Transfer Enhancement and Optimization Analysis of Energy Storage Based Solar Thermal Collector
  • Time :

Abstract
The application of solar water heating systems (SWHs) has attracted many attentions in recent years. The main component of a SWH system is the solar collector, and among various types of solar collectors, heat pipe evacuated tube solar collectors (HPETCs) are widely used. However, due to the intermittency in solar intensity, the HPETCs may not work at their maximum functionality. In this study, performance optimization of an HPETC integrated with phase change materials (PCMs), is investigated under normal and on-demand (stagnation) operations via computational fluid dynamics (CFD) modeling. In phase-I, the effect of heat pipe position on the overall performance of the collector is investigated. The results from phase-I show that the phase change process of PCM was expedited by 48 minutes under on-demand operation, for the collector with heat pipe in center, compared with conventional system (heat pipe at top), where in normal operation, the thermal energy storage enhancement is achieved, for the collector with heat pipe in center, by 24% increase in PCM’s melting fraction . In phase-II, the effect of various types of PCMs are investigated, where tritriacontane paraffin, xylitol, and erythritol are selected. In normal mode, the maximum exhibited total energy storage of 295.39 kJ/kg was acheived for paraffin tube, however, the fin temperature of xylitol tube was around 10 °C higher compared with the other tubes throughout the day. In on-demand operation, the maximum energy storage of 413.15 kJ/kg was achived for erythritol tube, however, the paraffin tube shows fin temperature difference of 14 °C compared with other tubes. Consequently, utilization of dual PCM of paraffin/xylitol in normal and paraffin/erythritol in on-demand operations is recommended to enhance system’s thermal performance. The results from this study can be a benchmark for further optimization of HPETCs in thermal energy storage systems.
Biography
Dr. Sarvenaz Sobhansarbandi is an assistant professor of mechanical engineering and director of Advanced Renewable/Thermal Energy (ART-E) laboratory at University of Missouri-Kansas city in United Staes. Her research interests include renewable energy, solar energy and computational fluid dynamics focusing on energy analysis of solar thermal collectors. She is also interested in Hydrogen energy and fuel cell technology with application in stationary and portable power generation systems. She has gained several years of research experience in the broad area of Thermo-Fluids, particularly solar energy technology and thermal energy storage materials. She had exposure to design/modeling of technical issues both by simulation and in real field-testing. She is the recipient of Funding for Excellence (FFE) award, ASME 2017 best paper award and ASHRAE 2015-2016 award from North Texas section.

  • University of Delhi, India
  • Title:The Use of Green nanotechnology for Human Lung Adenocarcinoma (A549 cells) and High Performance Supercapacitor Applications.
  • Time :

Abstract
In this paper, ZnO nanoparticles (NPs) have been synthesized using extract of leaves of Azadirachta indica (Neem tree), Ficus benghalensis (banyan tree) and Tabernaemontana divericata (Chameli). These green synthesized NPs have been studied for anticancer and supercapacitor applications. The synthesized NPs have been characterized using various techniques such as UV–Visible spectroscopy, FTIR, powder x-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM). The green synthesized nanoparticles with Azadirachta indica have been used to investigate the cell viability of human lung adenocarcinoma (A549 cells) using MTT assay. Herein, a comparative anticancer study has been performed using only leaves extract of Azadirachta indica, ZnO NPs synthesized with leaves extract of Azadirachta indica and chemical-wet method respectively. The viability of lung cancer cell lines (A549) decreases significantly with ZnO NPs synthesized with leaves extract as compare to only extract (OE) of leaves of Azadirachta indica (Neem tree). The cell viability does not changes with concentration of ZnO NPs synthesized with chemical wet method. So, the ZnO NPs synthesized with chemical-wet method has been used as a control for this anticancer activity. The cell viability also decreases with an incubation period of 48 h at the concentration (100, 150, 200 and 250 µg/mL) of ZnO NPs. The IC50 value for zinc oxide nanoparticles prepared with 1 mL of leaves extract (L1-NPs) has been obtained 138.50µg/mL at 48 h incubation. Herein, the flow cytometry study has also been performed. The ZnO NPs synthesized with leaves extract of Ficus benghalensis (banyan tree) and Tabernaemontana divericata (Chameli) have been studied for supercapacitor applications. The specific capacitance (Cs) has been determined using cyclic voltammetry (CV) technique. Herein, the calculated values of specific capacitance for ZnO NPs synthesized with Ficus benghalensis (banyan tree) are 6.318 F g-1 at 20 mV/s, 4.363 F g-1 at 40 mV/s, 3.611 F g-1 at 60 mV/s, 3.222 F g-1 at 80 mV/s and 2.972 F g-1 at 100 mV/s respectively. Similarly, the specific capacitance have been calculated using glassy carbon electrode (GCE), which has been drop casted by ZnO NPs synthesized with Tabernaemontana divericata. Herein, the calculated values of specific capacitance are 535.7142 F g-1, 401.7857 F g-1, 304.7619 F g-1, 229.9107 F g-1 and 189.2857 F g-1 respectively. Herein, the highest energy density and power density have also been determined 36.4583Wh/kg and 65.6249W/kg respectively at 20 mV/s. Whereas, the values of highest energy density varies in the range from 1.0620 Wh/kg to 0.4996 Wh/kg for ZnO NPs synthesized with Ficus benghalensis. It means, the ZnO NPs synthesized with Tabernaemontana divericata can be used as an electrode material for high performance supercapacitors and ZnO NPs synthesized with leaves extract of Azadirachta indica can be used as nanomedicine for lung cancer.

  • Gorgan University of Agricultural Sciences & Natural Resources, Iran
  • Title:GIS-based Ensemble Computational Models for Flood Susceptibility Prediction in the Quang Binh Province, Vietnam
  • Time :

Abstract
Recently, floods are occurring more frequently every year around the world due to increased anthropogenic activities and climate change. There is a need to develop accurate models for flood susceptibility prediction and mapping, which can be helpful in developing more efficient flood management plans. In this study, the Partial Decision Tree (PART) classifier and the AdaBoost, Bagging, Dagging, and Random Subspace ensembles learning techniques were combined to develop novel GIS-based ensemble computational models (ABPART, BPART, DPART and RSSPART) for flood susceptibility mapping in the Quang Binh Province, Vietnam. In total, 351 flood locations were used in the model study. This data was divided into a 70:30 ratio for model training (70% ≅ 255 locations) and (30% ≅ 96 locations) for model validation. Ten flood influencing factors, namely elevation, slope, curvature, flow direction, flow accumulation, river density, distance from river, rainfall, land-use, and geology, were used for the development of models. The OneR feature selection method was used to select and prioritize important factors for the spatial modeling. The results revealed that land-use, geology, and slope are the most important conditioning factors in the occurrence of floods in the study area. Standard statistical methods, including the ROC curve (AUC), were used for the performance evaluation of models. Results indicated that the performance of all models was good (AUC > 0.9) and RSSPART (AUC = 0.959) outperformed the others. Thus, the RSSPART model can be used for accurately predicting and mapping flood susceptibility.
Biography
Mahdis Amiri, She is 27 years old, also her date of birth is May 16, 1994, Her Place of Birth is Shiraz, currently she is PhD student at Gorgan University of Agricultural Sciences and Natural Resources, Department of Watershed & Arid Zone Management, Gorgan, Iran. She in the sixth semester. She hold a Bachelor and Master of Science degrees from the University of Shiraz. Her majors are Natural resource, Her master’s thesis title is Spatial Modeling of Gully Erosion and. She is currently working on Spatial modeling and multi-hazards. Also, She is very interested in Spatial Modelling of Gully erosion, Landslide, Fire Forest and Flood susceptibility also groundwater potential.

  • Kyoto University, NIES; JAPAN
  • Title:Long-term Nationwide Spatiotemporal Changes and Trends of Freshwater Temperature in Japan (1982–2016)
  • Time :

Abstract
If the present rates of biodiversity loss continue, projections suggest that within 240 years Earth may face its sixth mass extinction. Because many fishes and amphibians, as well as crustaceans, mollusks, and other aquatic macroinvertebrates, are ectotherms, temperature is an important component of water quality that directly affects their growth rate and distribution Freshwater temperature is a physical water quality parameter of critical importance, and understanding the trends in freshwater temperature is important for identifying potential threats to the biodiversity of aquatic ecosystems.
We analyzed freshwater temperature data (based on “The Water Quality Survey of Public Water Areas” of the Ministry of the Environment) from 1982 to 2016 throughout Japan to better understand how waters are warming in Japan.
We used linear regression to determine the temperature change rate and Mann-Kendall tests to identify significant temporal trends in the annual maximum and mean temperatures. Among 11,240 monitoring sites screened, 159 with fewer missing values were selected for analysis.
On the basis of this analysis, we identified and ranked the sites showing significant temporal increasing or decreasing trends for future management. At nearly half (42%) of the analyzed sites, the annual mean freshwater temperature was increasing; thus, in the future, adverse impacts from warm temperatures may increase in those aquatic ecosystems. The temperature change rate of fresh water was higher than that of air, indicating that the observed increases in freshwater temperature were not due to atmospheric warming only. Among individual sites, the annual maximum freshwater temperature change rate ranged from -1.27 to 1.91 °C/decade, and the annual mean rate ranged from -1.13 to 1.28 °C/decade. Few other studies have reported decreasing temperatures for fresh water.
We expect our results will improve understanding of how freshwater temperatures are changing at a large scale, enhance understanding of human impacts on the aquatic environment, support effective management of ecosystems experiencing temperature changes, and help to minimize the loss of biodiversity over the next half century.
(Keywords: Air temperature, Freshwater temperature, Global warming, Japan, Spatiotemporal analysis, GIS.)
Biography
Dr. Satoshi Kameyama is a Senior Chief Researcher at Biodiversity Division, National Institute for Environmental Studies; JAPAN. He is a Specially Appointed Professor at The Kyoto University (Center for the Promotion of Interdisciplinary Education and Research) and a lecturer at The University of Tokyo (The Graduate School of Agriculture and Life Science) in 2018. He is also working as visiting lecturer at VNU (Vietnam Japan University) in Vietnam National University. He received Ph.D. degrees from The Graduate School of Agriculture from The Hokkaido University in 1999. He is an editorial board member of The Remote Sensing Society of Japan from 2011. He is also a member of American Geophysical Union, American Fisheries Society, The Ecological Society of Japan, The Japanese Alpine Club etc. The main research topics of recent years are “Evaluation of ecosystem functions and services and their sustainable use” and “Watershed ecosystem restoration based on the recovery of migration pass and diadromous fish habitat using Environmental DNA” etc. The final goal (the dream) of his research is to realize sustainable regional community with high resilience to climate change harmonizing with nature.

  • Federal Technological University of Parana, Brazil
  • Title:Modeling of the Dispersion of Pollutants in Porous Media: Case of a Landfill in Brazil
  • Time :

Abstract
Municipal solid waste (MSW) disposal systems are still a sanitary and environmental problem. The high concentration of toxic substances existing in liquids arising from the decomposition of waste, present a risk to human health and the environment. It is necessary to establish mechanisms to predict leachate dispersion in order to determine possible scenarios and control systems. This work investigates the dispersion of leachate from urban solid waste through saturated soil. The municipal landfill of Jacarezinho in Brazil is the focus of the study. The conceptual model was based on existing data from geology, hydrology, hydrogeology and leachate characterization. The codes MODFLOW and MT3DMS were used and the dispersion of chromium, copper, lead and zinc was simulated. Pollutant mass concentration fields were calculated in 1, 5, 10, 25 and 50 years. The results indicated that the pollutants could reach the Ouro Grande River, in a period of 5 years and the tributary in a period of 1 year of the initial generation of leachate. For the final period of the simulation, the tributary of the Ouro Grande River received copper and lead concentrations that exceeded the maximum values allowed in Brazilian legislation for the watercourse quality standard. It was concluded that the Jacarezinho landfill has the potential to pollute the surrounding soil and groundwater.
Biography
Dr. Jonathan Steven M. F was Born in Colombia. He is an Environmental Engineer graduated from the Meta University Corporation in Colombia (2014), Specialist in Safety and Health at Work from the University of Los Llanos in Colombia (2016), obtained Master´s degree from Environmental Science and Technology from the Federal Technological University of Paraná in Brazil (2020). He has 7 years of experience as an environmental engineer in solid waste management companies and 5 years of experience as an undergraduate university professor. Since 2016 he has been a professor at the Faculty of Environmental Engineering of the Santo Tomas University in Colombia, where he has directed several final papers, most of them related to solid waste. Currently, he is a researcher at the Universidad Santo Tomás and works in the area of Green Chemistry and environmental simulation.

  • CEA French Atomic Commission - Energy Division - Marcoule Center- Dismantling and Waste Conditioning Department, France
  • Title:Management of Highly Radioactive Nuclear Waste coming from Nuclear Power Plants : Materials, Processes and Long-term Performance Assessment
  • Time :

Abstract
This presentation is devoted to highly radioactive nuclear waste management, all around the world. A synthesis of the high level waste (HLW) typology and key characteristics is given, showing that nuclear glass and spent nuclear fuel need to be considered for long term disposal, depending on national strategies. A rationale for selecting a relevant conditioning process is then presented, describing the parameters and constraints to take into account. A brief description of the vitrification processes, the sole industrially deployed conditioning process for HLW, is then presented. The vitrified waste interim storage strategy is described. The knowledge about the long term performance of HLW, spent nuclear fuel and nuclear glass, in geological disposal is then detailed. Finally, the development of alternative conditioning processes for HLW are briefly presented.
Biography
56 years old
PhD “Material Sciences” – Glass Science
15 years in R&D for Nuclear Waste Conditioning, especially in vitrification, cementation of effluents and solids
15 years in Projects and Teams Management
40 papers, several international collaborations, participation to many IAEA technical meetings, international
conferences

  • Brazilian Biorenewables National Laboratory, Brazil
  • Title:Effect of Nitrogen Fertilization Associated with Vinasse and Biochar on the Dynamics of the Microbiota and N2O Emission in Soil Under Energy Cane Cultivation
  • Time :

Abstract
In the face of world pressure, the Brazilian sugar-energy sector has been optimizing and using more sustainable agricultural practices. Among them is the planting of new varieties, such as energy cane, i.e., hybrids of Saccharum spp. used for biomass production, showing higher fiber and biomass content, less edaphoclimatic requirements, and more resistance to pests and diseases. In addition to the use of these new varieties, optimizing management practices that encompass the crop production cycle, such as the use of nitrogen fertilizers by the industry, is necessary for the efficiency of the system. These fertilizers are known to be responsible for N2O emissions. Plants use less than 50% of the applied fertilizer, so at least twice as much as it is necessary to be applied for crop growth and production, and what is not absorbed remains in the soil or gets lost into the atmosphere. The reuse of agro- industrial residues also is a major differential of the sugar-energy sector because it promotes cost reduction and prevents incorrect disposal. Biochar or pyrogenic coal are also possibilities besides vinasse and straw, already widespread. In this context, we will present a study that aims to propose mainly microbiological indicators as a function of energy cane response to nitrogen fertilizer doses and application of co-products from the sugar-energy industry (vinasse and biochar) to mitigate GHG of anthropogenic origin to reduce the contribution of agriculture to global warming.

Biography
Dr. Mara Regina Moitinho Graduated in Biological Sciences at the Centro Universitário da Grande Dourados (2010), MSc in Agronomy (Soil Science) from the Universidade Estadual Paulista Júlio de Mesquita Filho (2013), PhD in Agronomy (Soil Science) from the Universidade Estadual Paulista Júlio de Mesquita Filho (2017), postdoctoral fellow in Agronomy (Soil Science) at the Universidade Estadual Paulista Júlio de Mesquita Filho (2018), postdoctoral fellow in Agronomy (Soil Microbiology) at the Institut National de la Recherche Agronomique (INRAE – Dijon, France) (2020), with postdoctoral studies in progress in the area of Soil Sustainability at the National Biorenovables Laboratory (LNBR), Campinas, SP. She has experience in the area of Agroecology, with an emphasis on agroforestry systems, green manure, characterization of soil CO2 and N2O emissions according to soil physical, chemical, and microbiological attributes and classical and multivariate statistics.

  • University of Seville, Spain
  • Title:Regional Comparison on Energy Efficiency Drivers
  • Time :

Abstract
The impact of energy use on the planet is continuously increasing and stands as an unsolved problem. Energy efficiency remains as the main mitigation factor to curb the growth of energy consumption and related CO2 emissions, arguably the major responsible for climate change. Understanding the driving forces behind efficiency change is therefore crucial for defining energy policies and examining sustainable development pathways. To this aim, we propose a pyramidal approach to progressively analyse and decompose energy intensity, the main global efficiency indicator, using the LMDI method. First, the effects related to supply and demand sides of the energy system are separated. Then, the supply side is further decomposed to reveal structural effects associated with transformation processes and fuel types. The approach is applied to developed (OECD) and developing (non-OECD) regions to provide meaningful analysis and comparison of past trends, which could shed light to future effective environmental actions. The results show that a significant decrease in the energy intensity of both regions has been driven mainly by widespread improvements in demand-side efficiency. Despite huge differences in 1990, rapid globalisation of enhanced conversion devices and passive systems across borders suggests future convergence between developed and developing regions. Regarding the supply side, unfavourable structural changes due to electrification have only been offset by transformation efficiency gains in developed countries. Consequently, emerging economies have worsened their energy sector efficiency as they thrive. Hopefully, they could take OECD’s achievements as a roadmap to decouple development trajectories from an inefficient electrification as soon as possible. Key strategies should address changes in fuel mixes, as they have generally contributed to energy intensity reductions mainly due to shifts from coal and nuclear power towards gas and renewable plants. The proposed methodology could help stakeholders to effectively analyse the energy system and to develop policies to reduce its environmental impact.

Biography
María González-Torres, PhD student in Energy, Chemical and Environmental Engineering at University of Seville – Spain. She is an Industrial Technologies Engineer, with a MSc in Industrial Engineering and an expert in HVAC systems. She is currently working as a researcher in the Department of Energy Engineering at the University of Seville, in cooperation with the University of Cadiz within the Thermal Engineering Research Group. Her research focuses on identifying and quantifying the driving forces that make energy consumption and CO2 emissions change, considering the socio-economic factors leading to their growth and how efficiency and decarbonisation could counteract their effects.

  • Federal University of Santa Maria, Brazil
  • Title:Food Loss and Waste in the Context of the Circular Economy: a Systematic Review
  • Time :

Abstract
About 30% of food produced globally is lost or wasted along the food supply chain. In this sense, the objective of this research is to identify and systematize scientific publications relating food losses and wastes with solutions based on the concept of circular economy. Through inclusion and exclusion criteria, 40 articles were identified, until April 2020, which were analysed using the StArt tool. The papers were analysed based on the five categories selected in this study: definitions of food losses and wastes, quantification of food losses and wastes, solutions for food losses and wastes, examples of circular economy, relationship between food losses and wastes circular economy and food. The publications on the theme are from 2011, being mostly reviews until 2018 and case studies in the last two years. Developed countries, mainly European, have more publications. It is worth mentioning that there is no specific concept for food losses and wastes, which makes it difficult to quantify. The concept of circular economy is more related in terms of reduction, reuse and recycling than the idea of a systematic change in the food supply chain. The need for future studies that associate food losses and wastes with the circular economy remains a global challenge, especially for developing countries.

Biography
Dr. Mariana Martins de Oliveira has a Master’s in Agribusiness from the Federal University of Santa Maria – UFSM / Palmeira das Missões. She graduated in Environmental Engineering from the University of Vale do Itajaí-UNIVALI. She worked in the Environmental Management of the Port of Itajaí. She participated in the Agro Leadership Development Program promoted by the National Agriculture Confederation, ranking among the finalists to represent Rio Grande do Sul in the National stage in Brasília. She also participated in the Young Champions of the Earth Award promoted by the UN Environment, where her project was selected among the 50 best. By reconciling the academic area with the technical area, she provided environmental consultancy services to rural unions in the region. She is currently Coordinator of the Municipal Environment Department of the Palmeira das Missões City Hall. She is also a partner owner of TopoMen Palmeira das Missões, working in the areas of georeferencing, topography and environmental licensing. In the research she is interested in the environmental and agribusiness areas related to waste management, food loss and waste, circular economy.

  • Federal University of Pará, Brazil
  • Title:Legacies on the ground. Assessing ancient plant management in the Lower Amazon
  • Time :

Abstract

Plant management and human development are entangled in Amazonia, where landscape transformations such as cultural forests and anthrosols are associated with archaeological sites. The highly fertile Amazonian Dark Earths (ADEs) are anthropogenic soils that figure as a major human footprint in Amazonian landscapes. Numerous ancient Tapajó settlements dated to the Late Pre-Columbian period (AD 1000-1600) within the Santarem region present ADEs. This paper presents the main results from an archaeobotanical study in three sites recovering a diversity of food and non-food plants through phytolith analysis in samples from domestic contexts and test pits profiles. Domesticates included maize (Zea mays), manioc (Manihot esculenta), and squash (Cucurbita sp.), whereas palms (peach palm/tucumã, açaí palm), tubers (Marantaceae) and fruit trees (Annonaceae, Burseraceae and Celtis sp.) were the main native plants recovered in samples from the three sites. These phytoliths and anthropogenic soils are addressed as legacies from past human plant consumption and assess ancient soil and vegetal management strategies.

Biography

Dr. Daiana T. Alves is currently a full-time Professor at the Federal University of Pará, Brazil. She has a BA in History (2009) and an MA in Anthropology/Archaeology (2012) from the Federal University of Pará and a PhD in Archeology (2017) from the University of Exeter (United Kingdom). She is chief editor of the Amazônica-Anthropology Journal and a member of the Society for Brazilian Archeology (SAB), Society for American Archeology (SAA) and International Phytolith Society (IPS). She leads the Research Group on Amazonian Archaeology – Tapera, investigating plants’ production and consumption in the Pre-Columbian Amazon. Her research focuses on Pre-Columbian land-uses, food production strategies and social changes in Amazonia by integrating archaeology, ethnohistory, geochemistry, and Palaeoethnobotany approaches. A particular interest is the formation of Amazonian Dark Earth anthrosols associated with late Holocene archaeological sites.

  • Aalborg University, Denmark.
  • Title:Optimized Conversion of Waste Cooking Oil into Ecofriendly Bio-based Polymeric Surfactant- A Solution for Enhanced Oil Recovery and Green Fuel Compatibility
  • Time :

Abstract
Waste cooking oil (WCO) is generally considered a global waste but with prospective for secondary use such as fuels or chemicals. In the present work, functionalizing of WCO to polymeric surfactants through a cleaner approach with high emulsification ability for enhanced oil recovery (EOR) of fossil crude and enhanced biocrudes solubility in petroleum crudes is proposed. The influence of synthesis conditions (temperature, time and concentration of reactants) on intermediates and the resulting polymeric surfactants was investigated. Products were characterized by UV-Vis, 1H NMR, FT-IR, and DLS technique, and particle stability and Zeta potential were evaluated. The results showed the high stability of the fossil crude-surfactant-brine emulsion. The affinity of the polymeric surfactant for EOR under Danish reservoir was also investigated. It was observed that the IFT of brine-surfactant emulsion (31.35 dynes/cm) was reduced to almost half compared to neat saline water (68.82 dynes/cm), and that the viscosity of fossil crude oil in presence of polymeric surfactant was significantly decreased. Finally, the polymeric surfactant was employed to assess compatibility of hydrothermal liquefaction (HTL) and pyrolysis biocrudes with fossil refinery streams with an aim to promote their integration into existing refinery. Consequently, the correlation between compatibility and molecular structure was drawn based on the experimental investigation on miscibility studies. The results obtained during the phase behaviour and IFT studies showed the high emulsification ability of functionalized polymeric surfactant for the enhanced crude oil recovery at reservoir conditions. In conclusion, the study introduces the concept of reusing WCO as an ecofriendly polymeric surfactant for EOR and green fuel compatibility enhancer.

Biography
Kamaldeep Sharma, Ph.D. is Postdoctoral-Fellow in advanced biofuels group at Aalborg University, Denmark. Kamaldeep received Bachelor’s, Master’s and Ph.D. degrees from Guru Nanak Dev University, India. He is a pioneer in homogeneous and heterogeneous catalysis and has several years’ experience in catalysts synthesis for photocatalytic and catalytic conversion processes for the synthesis of value added chemicals. Additionally, he has also 2 years’ experience in hydrothermal liquefaction and catalytic upgrading of bio-oils. His recent research activities include the synthesis of catalysts from industrial wastes as well as utilization of different wastes (agricultural wastes, municipal wastes and sewage sludge) for the production of biofuels. He has published several research articles and book chapters in peer-reviewed journals of international repute. He is currently working in a couple of Danish and European Union research projects during his stay at Aalborg University. He is guest editor of a special issue of Energies (ISSN 1996-1073) belongs to the section ‘‘Bio-Energy’’.

  • Joint Institute of Nuclear Research, Russia.
  • Title:Subcritical Nuclear Reactor Driven by ion Beams
  • Time :

Abstract
The performance of subcritical nuclear reactors driven by proton and ion beams (accelerator driven system- ADS) is analyzed and the advantage of ion beams is substantiated. The conditions which maximize the power production and the energy gain G (defined as the ratio of the power produced to the power spent for the beam acceleration), ensuring in the same time a safe exploitation are identified.
With a proper choice of the target G of 20-30 can be obtained.
The particle fluence and the energy released are obtained through simulation with Geant4. The power spent to accelerate the beam is calculated by scaling from the data about the accelerator efficiency for a reference particle.
Cylindrical targets with rods of solid fuel (metallic alloy, oxide, carbide) in a bath of coolant are considered. The most significant influence on the energy released demonstrates the material used for the converter. The use of light materials increases the energy released especially for light ions at low energy. The best results are obtained with Be converter with length 100-120 cm.
The value of the criticality coefficient keff must be chosen as high as possible to maximize the power produced, but low enough to ensure a safe functioning of the reactor. The reactivity changes during various accident scenarios were analyzed in order to identify possible positive reactivity insertions. A value of 0.985 for keff ensures enough safety margin.
The results obtained with protons and ions beams from deuteron to 20Ne and energies from
0.2 to 2 AGeV, accelerated in a linac and interacting in U-Pu-Zr target with Be converter and keff 0.985 are presented. The beam intensity is 1.25‧1016, and the linac efficiency 0.18 for protons (values taken from the European Spallation Source project).
The optimal energy for proton is 1.5 GeV, with a G of 10 and net power Pnet of 150 MW. G 2-3 times higher can be realized with ion beams. With a beam of 7Li with energy 0.25 AGeV one gets the same Pnet but with G of 18, and necessitates an accelerator 2.6 times shorter. At intermediate accelerator length beams of Li or Be are the best option (G 20-25, Pnet 350-400 MW). In an accelerator with the same length as for 1.5 GeV proton it is preferable to accelerate ions with higher mass (12C, 16O, 20Ne) getting a G~ 30 and Pnet~1 GW.

Biography
Dr. Mihaela Paraipan has completed her PhD from Politechnica University Bucharest, Romania.
She is working in present as senior researcher at the Joint Institute for Nuclear Research, Dubna , and she has more than 20 articles in peer reviewed journals.

  • University of Dublin, Ireland.
  • Title:Pyroprocessing and Reactivity of Saudi Arabian Red mud (RM) Waste for the Production of Sustainable Binders.
  • Time :

Abstract
The high embodied energy and Carbon emissions of traditional binders have led to a search for alternative cements. This paper explores the composition and reactivity of a red mud (RM) generated in vast quantities in Saudi Arabia, with a view to replace non-sustainable binders in construction.
RM waste is produced when refining bauxite for the production of aluminium. Previous authors estimate that 70-120 million tons of RM are generated annually, and stored on land or in the ocean near alumina refineries. In Ma’aden, current production is around 6,000 tonnes per day (over 2 million tonnes per year) which leads to long term disposal problems and land decommissioning costs. To date, due to its high alkalinity, only small quantities RM (3 wt.%) have been incorporated into Portland cement. However, the quantities need to raise to at least 5-10% for a worthy disposal option, and a viable option has not yet been found.
This paper studies the physical properties, composition and reactivity of the Saudi RM, and concludes on its possible application as a binder. The silica content and alkalinity are considered, as well as the specific surface area and composition which determine reactivity. According to the results, the RM presents abundant surface available to reaction, superior to commercial Portland cement and to other pozzolanic and supplementary cements such as FA and GGBS. The results also evidenced that gibbsite- Al (OH)3 , hematite -Fe₂O3 and cancrinite – Na₆Ca₂[(CO₃)₂|Al₆Si₆O₂₄]• 2H₂O are the main components of the RM, and that some Boehmite- ϒ- AlO(OH) is also present, inherited form the parent bauxite. The high alkalinity and temperature of the Bayer process have transformed the original kaolinite into cancrinite. The phase transformation of the RM resulting from the pyroprocessing at several temperatures are determined with X-Ray Diffraction analyses. The paper explores the evolution of the crystalline phases and their reactivity based on the setting and strength development.

Biography
Dr. Sara Pavia is a Professor in the Dept. of Civil Engineering, University of Dublin Trinity College. Her work focusses on sustainable materials and construction including thermal insulation, alkali-activated cements and pozzolanic binders, earth construction, building limes, bio-aggregate concretes and waste activation. She also works on historic buildings in both industry and academia.
She has published seven books and 150 papers and she often works in industry, for Government bodies and in several European groups such as RILEM and CEN.

  • Delhi Technological University,India
  • Title:Modelling and Simulation of Cathode Material for 2D Lithium-ion Solid-State Battery
  • Time :

Abstract

This work has been presented to develop a simulation model of 2D Lithium-ion Solid State Battery (SSB) for studying the thermal and electrical characteristics by varying the thickness of the electrode. This simulation model helps us to explore the cathode material characteristics to optimize lithium-ion SSB’s performance. In this paper, the simulation model has been formulated with 2D domain geometry and also encapsulated with variable parameters on a Multiphysics software. The electrochemical model was also formed with the help of mathematical modeling equations to obtain the rate capability of the li-ion SSB. This simulation model study shows the good thermal stability of the cathode material with a varied temperature range from 0⸰C to 150⸰C. Moreover, the electrical and electrochemical results also show good electrochemical reactivity, proper diffusion of li-ions, and good transport properties in the positive electrode of the li-ion SSB. Furthermore, this simulation approach shows a proper discharge curve at various C-rates and also highlights the concentration of li-ion, electrons, and heat flux with good stability in the Lithium-ion SSB.

Biography
Snigdha Sharma has always been interested in the field of energy storage devices, taking into account the batteries, supercapacitors, and many more. She received a bachelor’s degree (B. Tech) in electrical and electronics engineering from Gautam Buddha Technical University, India, and a master’s degree (M. Tech) in Power system engineering from Gautam Buddha University, India. Currently, She is in Delhi Technological University, New Delhi, India. She strengthened her expertise in lithium-ion batteries in which she is having a handful command on simulation software as wells as experimental work for various applications such as Electric Vehicles, Automations, Grids, and Battery back-up systems.

X